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Abstract

This paper presents a series of tests that have been conducted to validate the collision
models of the HawkDSMC implementation. These tests cover the hard sphere (HS), vari-
able hard sphere (VHS), and variable soft sphere (VSS) collision models, and the Larsen-
Borgnakke energy exchange model, for non-reacting gas mixtures. The results show that
Hawkobtains the correct results in all cases under consideration.

1 Introduction

Recent advances in microprocessor performance have been driven primarily by improvements

in manufacturing technology. New processes and equipment have paved the way for smaller

feature sizes and larger die sizes. These have in turn enabled the production of microprocessors

with more transistors, operating at lower voltages and higher clock rates. One of the key pieces

of equipment in microelectronics manufacturing is the plasma reactor, used in 30 to 40 percent

of the processing steps. Plasma reactors use energetic rarefied gases, plasmas, to remove parti-

cles from, and deposit particles on, silicon wafers. Improving the design of these reactors, and

the processes that they are used for, will enable the microelectronics industry to make smaller,

cheaper, and faster microprocessors.

Design and optimization of plasma reactors has so far been largely empirical. Experiments

have been conducted to improve process configurations, but because of the high equipment and�
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Figure 1: A Plasma Reactor

operating costs of plasma reactors, detailed parametric studies have been economically imprac-

tical. Computer-based simulation of the plasma flow inside a reactor will allow manufacturers

to evaluate the viability of different reactor designs before they are implemented. Once a reac-

tor has been installed, simulation results will also be useful for studying the effects of different

operating conditions, thereby optimizing processing stages.

Figure 1 shows a typical plasma reactor, the GEC Reference Cell, and Figure 2 schemati-

cally depicts its operation. A silicon wafer is attached to an electrode, and plasma fills the space

between the wafer and another electrode. Gas flows in, reactions take place within the gas and

on the surface of the wafer, and the products of these reactions are pumped out of the reactor.

Electromagnetic fields, applied through the electrodes, add energy to the system.

Advanced plasma simulation capabilities will be directly applicable to problems in the mi-

croelectronics industry and can therefore have direct bearing on industrial competitiveness. Sim-

ulations will be useful for studying process optimization, compact model development, equip-

ment evaluation, process control, and technology feasibility. Efficient modeling will reduce the

time and cost of microelectronics development, and therefore help improve the quality of the

next generation of microprocessors.
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Figure 2: Reactor Schematic

2 Direct Simulation Monte Carlo

Plasma flow is in the transition regime: the mean free path of particles is too large for traditional

continuum CFD methods to be applicable, but because collisions are important, free-molecular

simulations are not appropriate, either. The Direct Simulation Monte Carlo (DSMC) method

(See, for example, [Bird94].) is a widely used numerical approach for solving rarefied gas dy-

namics problems in the transitional regime. It simulates individual particles as they move through

space and collide with solid objects and other particles. Macroscopic properties, such as density

and temperature, can be computed by appropriate averaging of particle masses, positions, and

velocities. Surface properties are calculated from the momentum and energy exchanges during

collisions with surfaces.

In a DSMC simulation, a physical region of interest is decomposed into a number of cells.

The cells are initially filled with simulation particles according to density, temperature, and ve-

locity specifications. The simulation takes discrete steps in time, during which these particles are

allowed to move throughout the domain and collide with other particles. Figure 3 shows several

cells (in two dimensions) and some of the possible operations that can take place on a particle

during a timestep. For example, particles may flow into the domain through injection cells, or

out of the domain through exhaust cells. They may also collide with, or become embedded in,

solid objects in the domain.
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Figure 3: DSMC Cells and Particles

The DSMC method simulates the Boltzmann equation by decoupling particle movement and

collisions. The two main components of any DSMC implementation are therefore the transport

and collision algorithms. Particle transport is conceptually straightforward, and is discussed in

detail in [Rieffel95]. Both the power and computational cost of the DSMC method are due to

the collision process, and are therefore the subject of this paper.

The main goal of this work is to validate the collision models that have been implemented

in Hawk, a DSMC application designed for the simulation of plasma reactors. General charac-

teristics of Hawk, including methods for computing macroscopic parameters, grid issues, and

the parallel implementation, are discussed in [Rieffel95]. The main purpose of this paper is to

present the collision models that are implemented in Hawk, and to demonstrate their validation.

For the purposes of validation, it has been useful to compare the results obtained with Hawkto

those obtained with another DSMC implementation, SMILE. SMILE is a Computational tool

for solving problems of rarefied gas aerodynamics [Ivanov92], created at the Institute of The-

oretical and Applied Mechanics (Novosibirsk, Russia). It is based on the majorant principle of

construction and substantiation of numerical schemes for the DSMC method. The coupling of

”cell” and ”free cell” schemes [Ivanov94] provides the required spatial resolution throughout

the whole flow field, including regions with strong gradients. The preprocessing subsystem of

this tool is used for defining the geometric model of a space vehicle and for specifying bound-

ary and initial conditions. The results of a computation, both flow fields and distributed surface

characteristics, can be analyzed with the postprocessing system.

The following sections describe the collision models that have been implemented in Hawk,
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and present results of a series of validation tests, comparing against analytical results as well as

the results of SMILE.
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3 DSMC Collision Overview

Generally, the global problem of creating collision models for DSMC method may be divided

into several subproblems, related to creation of

- intermolecular potential models

- models of rotational degrees of freedom of molecules

- models of vibrational degrees of freedom of molecules

- models of chemical reactions.

The basic models for all four groups used in DSMC method are presented below.

3.1 The Lennard-Jones Potential

A number of models to describe intermolecular potential is suggested in references. It is usually

assumed that the potential function includes molecular attraction at large distances and repulsion

at small ones. The most famous and mathematically convenient potential, taking into account

molecular attraction and repulsion, is the Lennard-Jones potential,�������
	���
������ ��������� ��� �������! 
where � is the distance at which the potential function changes its sign,



is the minimum poten-

tial value, and
�

is the distance between the particle centers. The deflection angle, " , is," 	$# �&%�')(+*, -/. �&0 � � ���21)354 ��687 *
9�: 0; 

where 0 �=<?> is the root of equation,. �@0 � � ��� 1 3 4 � 	 >  0 	BADC��  and
A

is the distance of closest approach of the undisturbed molecular trajectories in

the center of mass frame of reference.

In dimensionless variables, " may be rewritten as" 	?# �&%E0 � ' �,GFH . � � 0I0 � � � � .J � 0I0 �0 , � �K��L .M - 0I0 �0$N, 6 �KOP 7 *9 : 0; 
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where 0 	RQTSU S  V0 , 	WA�X8Y2Z S�\[�] ** 9  V0 N, 	^AKX_YVZ S�K�2] *` , AKXa	bQc ,
�VXa	 Uc , and 4 X!	Bd�efZ 9�hg .

In statistical simulation, the dependence " on two parameters 0 , and 0 N, necessitates the use

of interpolation tables for computing the maximum impact parameters and deflection angles. To

find the deflection angle for a pair of colliding particles in simulation, it is necessary to determine

the value
A�X d�i�j from the interpolation tables at the specified deflection angle cut-off, sample

AKX
and, using the tables again, find " . Because of the high computational cost of this process, as

well as difficulties in determining the mean free path, the Lennard-Jones potential is typically

only applied to homogeneous relaxation cases and simple one-dimensional problems.

3.2 The Inverse Power Law Potential

A more suitable model for high-temperature flows, where intermolecular repulsion prevails, is

the Inverse Power Law (IPL) model, ���\���+	 k��l � . �K�2m 7 �  where
l

is the power determining the ”hardness” of particles. The deflection angle is,

" 	$# �&% ')(+*, � . �@0 � � %l � . � 00 , � m 7 � � 7 *9 : 0; 
where 0 , 	$A Y d e Z 9n ] *o�p * , and 0 � <�> is the root of equation . �q0 � � �m 7 �

Y ((�r ] m 7 � 	 > . Note

that " is a function of one parameter, 0 , , and may be found from various approximate analytical

expressions [Nanbu81].

The total, viscosity, and diffusion cross-sections for IPL model are,�/s 	 ' � :Et 	^u
��v 	 ' � . �xwVy�z � " � � :Et 	 % #�{ � �K|/� - 1 3 k4 � 6

9o�p *
�/} 	 ' � . �&wDy~z�" � � :Et 	 % #�{ � �K|/� - 1)3 k4 ��6

9o�p *+�
To use the IPL model in a DSMC simulation, it is necessary to limit � s . This can be achieved

by specifying either a deflection angle cut-off or a maximum impact parameter value. In most
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cases, the latter is chosen. Since " is a function of 0 , , the deflection angle cut-off may be applied

through the specification of a maximum value 0 ,�� d of 0 , . This yields,

� s 	$# 0 �,�� d - k1)3�4 � 6
9oKp * �

At
l�	^u

, the IPL model is equivalent to the hard sphere model for,� s 	?# : �  A8	 :+�V�E� � " C % �  
where

:
is the molecular diameter.

8



4 The Hard Sphere Collision Model

Earlier versions of this implementation have been validated by comparison with published re-

sults [Zhong95] for heat-transfer problems [Rieffel95]. This section presents several further

tests, using the Hard Sphere (HS) collision model for gas mixtures and more complicated ge-

ometries.

4.1 Box Tests

The first series of tests considered here was designed to verify that all of the basic DSMC oper-

ations were correctly implemented, including transport, inflow, accomodation, and hard sphere

(HS) collisions. This series was performed in a 12-cell uniform cubic grid, with all walls spec-

ular.

The first test considered Ar and Ar*, two identical species. It was verified that the collision

frequencies were correct. Macroparameters were observed to be identical for both species.

The second test considered Ar and He in equal concentrations, with density � 	 . ��� M�� . > �h�
particles/ 1)� , and both species at a temperature of 300K. The system remained in equilibrium,

and all collision counts were equal to theoretical values.

The next test considered a mixture of Argon and Helium at different temperatures. The sys-

tem reached equilibrium of �5� U = ���+� = 300K, the collision numbers were correct, and the system

reached equilibrium at the same rate as SMILE.

The next test considered different concentrations of Ar and He, [Ar]=0.9, [He]=0.1. ��� U =

100K ���+� = 500K. Verified that the final temperature for both species was 0.9*100 + 0.1*500 =

140K.

The last box case considered the opposite concentrations, [Ar]=0.1, [He]=0.9, with ��� U =

100K and �5�+� = 500K. The final temperature for both species was the correct value, > � . � . >�> L> ��� ��� >�> 	�� J >�� .

4.2 Cylinder Test

The final HS test considers Mach-4 flow past a cylinder. The cylinder has a radius of 0.05m,

and the grid extends 0.15m in front of the center of the cylinder, 0.35m behind the center of the

cylinder, and 0.2m to the side of the cylinder. The freestream density is . ��� M=� . > �K� particles per

9



cubic meter, the freestream speed is 526.86 m/s, and the freestream temperature is 50 K. The

cylinder itself is fully accomodating at 300K. The inflow is composed of 50% Ar and 50% He.

Because the symmetric nature of the problem, only the upper half of the cylinder was simu-

lated. A thin (0.01m) 3-D grid was used for Hawk, while a 2D grid was used for SMILE. Argon

density plots for both codes are shown in Figures 4 and 5. The results of the simulations agree

very well.
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Figure 4: HawkAr Density

Figure 5: SMILE Ar Density
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5 The Variable Hard Sphere Collision Model

The Variable Hard Sphere (VHS) model, developed by Bird in 1981, uses cross sections that are

functions of relative velocity, but with hard sphere (HS) scattering angles. Collision, viscosity,

and diffusion cross sections therefore take the form,� s�� # : � 	 w � 1)3�4 � C % � 7����v 	 %M # : ��/} 	$# : � �
where w and � are parameters of the model. As in the HS model, the scattering angle is given

by, A�	 :+�V�E� � " C % � �
Equating � v for the IPL and VHS models yields,� 	 %l � .   w 	 M #�{ � ��|¡��� k C % � � �For a gas at equilibrium, ��s may be written as,� s 	 � U �£¢ � � U �¤¢� � �  
where � U �¤¢ is the reference value of the cross-section at the reference temperature � U �£¢ .

The VHS model is currently the most popular for DSMC simulations, because of its sim-

plicity and its good approximation to real intermolecular potentials. Note also that VHS colli-

sions are much more ”efficient” than IPL collisions. For example, relaxation for Maxwellian

molecules under the IPL model, with the deflection angle cut-off .¦¥ , is about six times slower

than under the VHS model with the same viscosity-temperature dependence.

In some cases, the parameters � , � U �£¢ , and � U �¤¢ may be known for collisions between par-

ticles of a species A, and similarly for a species B, but not for collisions between species A and

B. In this case, they can be approximated according to the formulae,� ��§ 	 ��� L ��§%  � �¨§ 	 -ª© � � L © � §% 6 �  �5��§ 	 � � L � §% �
12
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Figure 6: VHS 50-50

5.1 Box Tests

Initial validation of the VHS model consisted of running a uniform specular box and comparing

the number of collisions between Hawkand SMILE. The results were in excellent agreement.

The next series of tests studied the temperature relaxation rate in the specular box, with mixtures

of Argon and Helium at different temperatures and in different concentrations.

The first of these tests was a 50%-50% mixture of Argon and Helium, with Argon at 100

K and Helium at 500K. As would be expected, the final temperature of the mixture was 300K.

Figure 6 shows that SMILE and Hawkboth reached the correct final temperature at the same rate.

The second test was with 90% Argon at 100K and 10% Helium at 500K. The number of

collisions, and convergence rates, as shown in Figure 7, both agreed.

5.2 Cylinder Test

The final test of the VHS model was the cylinder problem, as described in Section 4.2. For this,

we used a mixture of 50% Argon and 50% Helium, with � =0.5. Density plots for the two codes

are shown in Figures 8 and 9, and these agree very well. The density along the streamline was

also compared and found to be the same for the two codes.
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Figure 8: HawkAr Density

Figure 9: SMILE Ar Density
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6 The Variable Soft Sphere Collision Model

The main disadvantage of the VHS model arises when equating viscosity coefficients ��v for the

VHS and IPL models. The diffusion cross-sections for the two models, and hence, the diffusion

coefficients, coincide only for the hard sphere model. The variable soft sphere (VSS) model

developed by Koura (1991) has no such drawback. In this model, the primary equations are,�/s � # : � 	 w N � .% 1 3 4 � � 7���5v 	 J�¬� ¬ L . �­� ¬ L % � %M # : �� } 	 %¬ L . # : �A�	 :+�V�E��® � " C % � �
Equating the VSS and IPL parameters, we obtain,� 	 %l L .  ¬ 	 - { � ��l��{ � ��l�� � .% 6¯7 �  w N 	 M #�{ � �\l/��� k C % � �

� ¬ L . ��� ¬ L % �J�¬ �
In a collision, we define two scattering angles, " and ° . " is the angle between the pre-

collision relative velocity and the post-collision relative velocity. ° is the azimuthal impact angle

measured between the collision plane and some reference plane. For hard sphere collisions (HS

and VHS), the scattering angles " and ° are both distributed uniformly. In terms of the molecule

diameter
:

and the impact parameter
A
, we can writeA: 	 �V�f� � " % � �

For VSS colisions, we use a parameter ± to characterize the anisotropy of the scattering angle,

and can therefore write, - A: 6+² 	 �V�E� � " % � �
These parameters must be used for computing the post-collision relative velocity ³4 N as a func-

tion of the pre-collision relative velocity ³4 , and the post-collision relative speed 4 N . For elastic
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collisions, 4 N is simply the magnitude of ³4 , while for inelastic collisions it may be different. The

procedure for computing ³4 N is as follows.

First, the azimuthal impact angle ° is computed using a random number ´ � ,° 	 % # ´ � �
Second, the scattering angle " is computed using another random number ´ � ,�V�f� " 	 %�´ ² � � .��µT¶ " 	I· . � �V�f� � " �
Next, the pre-collision relative velocity ³4 , is scaled to have the magnitude of the post-collision

relative speed, ³4 	 4 N ³4 ,¸ ³4 , ¸ �The components of ³4 N can then be computed as

4 Nj 	 4 j �V�E� " L · 4 �¹ L 4 �º �KµT¶ " �KµT¶ °
4 N¹ 	 4 ¹ �V�f� " L ��µT¶ " � 4 N 4 º �V�E� °�� 4 j 4 ¹ ��µ»¶ ° ��Y 4 �¹ L 4 �º ] 7 �K¼K�
4 Nº 	 4 º �V�f� "�� ��µT¶ " � 4 N 4 ¹ �V�E� ° L 4 j 4 º ��µT¶ ° ��Y 4 �¹ L 4 �º ] 7 �K¼K� �

6.1 Test 1

The first VSS test case was the box problem with Helium and Argon parameters as shown in the

table below. The number of collisions was compared with SMILE. The system was shown to

stay at equilibrium at 100K.
Species Ar-Ar Ar-He He-He� 0.31 0.235 0.16± 0.714 0.754 0.794
Fraction 0.5 0.5
Temperature 100 100 K
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Figure 10: VSS 50-50

6.2 Test 2

The next test for the VSS model was with Argon and Helium at different initial temperatures, as

shown in the table below. The convergence rates of the temperatures were shown to agree with

the results of SMILE, as shown in Figure 10.
Species Ar-Ar Ar-He He-He� 0.31 0.235 0.16± 0.714 0.754 0.794
Fraction 0.5 0.5
Temperature 100 500 K

6.3 Test 3

The final box test for the VSS model used Argon and Helium in different concentrations, ac-

cording to the table below. Results were in close agreement with those of SMILE, as shown in

Figure 12.
Parameter Ar-Ar Ar-He He-He� 0.31 0.235 0.16± 0.714 0.754 0.794
Fraction 0.9 0.1
Temperature 100 500 K
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Figure 13: HawkAr Density

Figure 14: SMILE Ar Density

6.4 Cylinder

The final VSS test considered the cylinder problem, as described in 4.2. Results for Hawkand

SMILE are shown in Figures 13 and 14.
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7 The Larsen-Borgnakke Energy Exchange Model

The Larsen-Borgnakke model of energy exchange is used to describe internal energy modes for

rotation and vibration[Borgnakke75]. Relative translational and internal post-collision energies

of colliding particles are assumed to be distributed according to equilibrium distribution func-

tion.

The model associates with each species a number of atoms � i and a characteristic vibrational

temperature ½_¾ , and with each particle, rotational energy ¿ U and vibrational energy ¿8¾ . Rota-

tional and vibrational energies are assumed to be continuous.

This implementation considers two types of energy exchange, translational-rotational (TR)

and translational-rotational-vibrational (TRV). Each collision has some probability
� 3 of a TR

exchange and some (smaller)probability
��À

of a TRV exchange.

7.1 Internal Degrees of Freedom

It is first necessary to characterize the number of degrees of freedom in each of the energy modes.

Relative translational energy has 3 degrees of freedom. For rotational energy, the number of

degrees of freedom Á U is a function of the number of atoms, � i , given by,Á U 	 ÂÃÄ ÃÅ > � i 	 .% � i 	 %M � iaÆ M �
The number of effective vibrational degrees of freedom can be derived from the simple har-

monic oscillator (SHO) approximation. Vibrational degrees of freedom are therefore a function

of the local temperature, � , and the species’ characteristic vibrational temperature ½_¾ , given by,Á ¾ 	 %E½_¾ C �Ç2È¡É ¼ s � . � i � � i � . �% �
7.2 Injection and Reflection

When a particle is first injected into a domain whether by initial conditions, inflow, or surface

emission, its initial rotational and vibrational energies must be computed. When a particle hits an

accomodating surface, its internal energies must be recomputed. These values are sampled from

the equilibrium distribution function for the specified temperature � . Internal energies, both ro-

tational, ¿ U and vibrational ¿8¾ , as functions of degrees of freedom, Á U and ÁD¾ , are computed as
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follows. If the number of degrees of freedom is less than or equal to two, the internal energy can

be computed using a single random number ´ � ,¿ 	 ��Ê ¶ � ´ � � ÁEË��% Á�Ì�% �
If the number of degrees of freedom is greater than two, internal energy is sampled, using

the acceptance-rejection method, from the distribution function,ÍÎ� ¿ �+	 .Ï � Á C % � � ¿Ë�� ��Ð ¼K� 7 � Ç 7EÑ ¼�Ò s Á < % �
7.3 Energy Redistribution During Collisions

The two mechanisms for exchange of internal energy are between translational and rotational

modes (TR), and between translational, rotational, and vibrational modes (TRV). These redis-

tributions take place according to the equilibrium energy distribution function for a specified

number of degrees of freedom, given by,ÍÓ� ¿ �+	 .Ï � Á C % � � ¿Ë�� � Ð ¼K� 7 � Ç 7EÑ ¼KÒ s  where
ÍÓ� ¿ � is the probability of the occurence of energy ¿ , Á is the number of degrees of free-

dom, Ë is the Boltzmann constant, and � is the temperature. For an exchange between two modes{
and Ô , with respective degrees of freedom ÁD� and ÁD§ , the joint distribution function is,Í�� ¿Õ�� �¿Õ§ �+	 Ç 7/Ö�Ñ¡×EØ¨Ñ¡Ù/Ú ¼KÒ sÏ � ÁD� C % � Ï � ÁD§ C % ��� ¿ �Ë�� � Ð × ¼K� 7 � � ¿ §Ë�� � Ð Ù ¼K� 7 � �

If the total energy, ¿ÕÛ 	 ¿Õ� L ¿Õ§ , is known,this can be rewritten as,Í�� ¿ �  ­¿ § �+	 Ç 7/Ö�Ñ/Ü»Ú ¼KÒ sÏ � Á � C % � Ï � Á § C % �¯� ¿8ÛÝ�&¿8§Ë�� � Ð × ¼K� 7 � � ¿8§Ë�� � Ð Ù ¼K� 7 � �
To sample from this distribution, the following acceptance-rejection procedure is used. First,

the values Þ d�iKj and
Í d�iKj are computed asÞ d�iKj 	 . �ßÁV� C %%a�ßÁ � C %à�ßÁ § C %Í d�iKj 	á� . �&Þ d�iKj � Ð × ¼K� 7 � Þ Ð Ù ¼K� 7 �d�iKj �
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A random number ´ � is then used to computeÍâ	I� . �x´ � � Ð × ¼K� 7 � � ´ � � Ð Ù ¼K� 7 �ã 	$Í�C�Í d�iKj �
The values

Í
and ã , and a random number ´ � are recomputed until ´ �8ä ã . Once this condition

has been met, the energy ¿8Û is redistributed between the modes
{

and Ô using,¿ � 	 ´ � ¿ Û¿8§ 	 ¿ÕÛ��&¿Õ� �
Once a collision is selected to take place, exchanges may take place between translational,

rotataional, and vibrational energy modes. A TR exchange takes place with proability
� 3 , and

a TRV exchange takes place with probability
��À

. The probabilities
� 3 and

��À
can be obtained

in two ways. They can either be specified as constants or computed as a function of species

parameters and the local translational temperature.

In order to compute the probabilities as functions of temperature, three additional parameters

must be stored for each species, the limiting value of the rotational relaxation number å U�æ , the

characteristic temperature of the inter-molecular potential, � X , and the effective excitation cross

section � ¾ . The TR exchange probability between species ç and è ,
�¡éëê3 , can then be computed as

[Lumpkin91, Parker59],� éëê3 	 -�. L Á U� �&%�� 6 . L^ìDí\î 9� Y s Ss ] ��¼K� L Y ì 9[ L # ] s Sså U æ  
where Á U 	 Á éU L Á êU is the number of rotational degrees of freedom in the collision, � is the VHS

collision parameter, and � 	 s/ï Ø sEð� is the local translational temperature averaged between the

two species.

The equation for the TRV exchange probability,
�¡éëêÀ

, was obtained from an empirical fit [Millikan63]

to experimental data witha high-temperature correction [Park85]. It can be written as,� éñêÀ 	 ÁDÛ ¥ ÛÁDÛ ¥ ÛÝ�ßÁD¾ ÂÄ Å�òÓóEô2õ¨ö Y÷{ � 7 �K¼ � L Ô ] � U �£¢ � % � %à�&� � Ë�� U �¤¢1 U � � %Ë�� © # Ï � %à�&� � - %EË��1 U 6 �K¼K� 7��L � U �£¢ © %� ¾ � % � %ø�&� � Ëù� U �¤¢1 U � � Ï � %à�&� � - %EË��1 U 6 7ù��ú ûü 7 �
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{á	þý � 1 �K¼K�U ½ [�¼ �¾Ô 	?ý § 1 � ¼h[U ½ [�¼ �¾ � ý�ÿ  
where òÓó 	 . > . M % � ò�� C�{�� 1 is a pressure conversion factor, � U �¤¢ and � U �£¢ are the VHS reference

cross section and temperature, and 1 U is the reduced mass of the collision. The constants
ý � 	% ��� � � . > � , � 7 � Ë 4 7 �K¼K� , ý § 	 �a% � .�. � . > � � � 7 [�¼ � Ë 4 7 � ¼\[ and

ý�ÿ^	 . �¨� � % are the constants

obtained by empirical fit [Millikan63].

7.3.1 TR Exchanges

A TR exchange is performed as follows. The total collision energy to be redistributed is the sum

of translational and rotational energies, ¿ ó 	 ¿ Û L ¿ U , where ¿ U 	 ¿ �U L ¿ §U is the sum of the

rotational energies of the two colliding particles. The first step in the exchange is to distribute the

collision energy between translational and rotational energy modes. After checking the relative

velocity in a collision, the distribution function is biased, so the number of relative translational

degrees of freedom must be taken as ÁDÛ 	?� � %�� � The number of rotational degrees of freedom

is the sum of rotational degrees of freedom for the two colliding particles, Á U 	 Á �U L Á §U . The

total collision energy is therefore first redistributed between ÁDÛ and Á U , as described in Section

7.3, yielding ¿ÕÛ and ¿ U , respectively.

The rotational energy is then redistributed between the two particles with rotational degrees

of freedom Á �U and Á §U , as described in Section 7.3, yielding ¿ �U and ¿ §U , respectively. The post-

collision relative velocity 4 N is then computed from the post-collision translational energy ¿8Û
using the reduced mass of the collision, 1 U ,4 N 	 � %�¿ÕÛ1 U �
7.3.2 TRV Exchanges

In a TRV exchange, the total collision energy is ¿ ó 	 ¿ÕÛ L ¿ é , where ¿ÕÛ is the translational

energy and ¿ é is the internal energy. The internal energy is in the sum of the internal energies

of the two particles, ¿ é 	 ¿ �é L ¿ §é . The internal energy of a particle is the sum of rotational

and vibrational enegies, ¿ �é 	 ¿ �U L ¿ �¾ . Similarly, the number of degreees of freedom in the

various energy modes are, ÁDÛ÷ �Á é  �Á �é  �Á §é  �Á �U  �Á §U  �Á �¾ , and Á §U .
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The total collision energy, ¿ ó , is first distributed between translational and internal modes,

using Á Û and Á é , to obtain ¿ Û and ¿ é . The translational energy ¿ Û is used to compute the post-

collision relative velocity, as described above. The internal energy ¿ é is distributed between

the two particles, using degrees of freedom Á �é and Á §é , to obtain ¿ �é and ¿ §é , respectively. The

internal energy of particle
{

, ¿ �é , is then distributed between rotational and vibrational modes,

with degrees of freedom Á �U and Á �¾ , to obtain rotational and vibrational energies, ¿ �U and ¿ �¾ ,

respectively. The internal energy for particle Ô is similarly distributed between ¿ §U and ¿ §¾ .

7.4 Temperature Calculation

The translational temperature ��Û for a species is calcualted with,�5Û 	 1 ���� � � �� � �M Ë �
The rotational temperature � U is similarly computed from the average rotational energy

�¿ U , us-

ing, � U 	 % �¿ UËEÁ U �
The vibrational temperature �5¾ is computed using the characteristic vibrational temperature ½=¾
and the average vibrational energy

�¿8¾ ,�5¾ 	 ½=¾Ê ¶ Y . L Ë È/É	Ñ É ]
�

The total temperature � can then be computed using,� 	 Á Û � Û L Á U � U L Á ¾ � ¾ÁDÛ L Á U L ÁV¾  
where ÁDÛ 	 M

is the number of translational degrees of freedom.

7.5 Box Tests

A series of tests was performed to validate this implementatoin of the Larsen-Borgnakke en-

ergy exchange model. These were designed to verify correct equilibrium conditions, as well

as translational-rotational (TR) and translational-rotational-vibrational (TRV) relaxation rates.

These tests were performed for a uniform box with specular walls.
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Figure 15: TR Relaxation

The first test was for N2 at equilibrium in a box, with translational, rotational, and vibrational

temperatures equal to 10,000K, density 1.83e19 particles per cubic meter, constant TR exchange

probability
� 3 	 > � % , and constant TRV exchange probability

� À 	 > � > % . The system stayed in

equilibrium for � = 0, 0.5 and 0.24.

The next case considered relaxation between translational and rotational modes for � = 0.24.

Initially, the translational temperature was 1000K, the rotational temperature 0K, and the vibra-

tional temperature 0K. The TR exchange probability was constant at
� 3 	 > � % , and no TRV

exchanges took place (
��À 	 > ). The results for Hawkand SMILE, agree as shown in Figure 15.

The next case considered relaxation between translational, rotational, and vibrational modes,

with parameters as shown in the table below.
Species N2� 0.24± 0.735� 3 0.2��À

0.02
 ¾ 3390 K K� U �¤¢ 273 K K� U �£¢ � � M > J � � . > 7 �h� 1 ��5Û 10000 K� U 5000 K�5¾ 0 K

The next case was a mixture of Nitrogen and Oxygen, each with internal degrees of freedom,
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Figure 16: TRV Relaxation

and with TR and TRV exchange probablilties as specified in the table below.
Species N2-N2 N2-O2 O2-O2� 0.24 0.255 0.27± 0.735 0.725 0.7143� 3 0.2 0.2 0.2��À

0.02 0.02 0.02
 ¾ 3390 2256 K� U �¤¢ 273 273 273 K� U �£¢ � � M > J � � . > 7 �\� � � M > J � � . > 7 �\� � � M >�� � . > 7 �\� 1 �Fraction .5 .5
Tt 10000 15000 K
Tr 5000 7500 K
Tv 0 0 K

As shown in Figure 17, agreement was excellent between Hawkand SMILE.

The next test considered variable exchange probabilities,
� 3 � � � and

��À�� � � . As shown in

Figure 18, the results agreed very well with SMILE.

7.6 Cylinder Test

The final Larsen-Borgnakke test was for supersonic flow around the cylinder. Figure 19 shows

a comparison of temperature profiles between Hawkand SMILE. Figures 20 and 21 show trans-

lational temperature flowfields for the two codes. Results agree to within statistical scatter.
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8 General Collision Algorithm

This section describes the algorithm for computing all of the collisions in a given cell. The vari-

able recompute is used to detect when the collision frequencies must be recomputed. This is

necessary during the first iteration of the loop, as well as any time a reaction takes place. The

total collision frequency
|

is the sum of the collision frequencies
| éëê between all pairs of speciesç and è .

1. recompute=True

2. t = 0

3. while
� ä timestep

(a) if recompute

i. let
|�	�
 éñê | éëê

ii. recompute = False

(b) � 	 7����2Ö 3 * Ú�
(c)

��	�� L �
(d) if

� ä timestep

i. Select species ç , è
ii. Select particles � ,

A
iii. if

c ï ð Ö Z���� Ú Z����� c ï ð Z���� � � < ´ �
A. Perform Collision

B. If reaction, recompute = True

The collision frequency between species ç and è is computed using| éëê 	 ÂÄ Å"! ï Ö ! ï 7 � Ú$#&% � c ï ð Z�� � � �� À ç 	 è
! ï ! ð #'% � c ï ð Z�� � � �À ç�(	 è  

where ) � éëê 4+* d�iKj is the maximum value of � éëê � 4 éëê � that has been observed between any pair of

colliding particles ç and è ,
ý
!

is the ratio of real to simulated particles, and , is the volume of
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the cell. Note that a separate value of ) � éëê 4+* d�i�j is kept for each pair of species. The species ç
and è are chosen with probability

� ï ð� . The particles � and
A

are selected randomly from the lists

for species ç and è .

Once two particles have been selected for a collision, the collision takes place according to

the following algorithm. A collision may be reacting or non-reacting. Each possible reacting

collision, or reaction, Ë , has an associated cross section, � Ò � 4 � , and will occur with probabilityc.- Ö Z Úc Ü Ö Z Ú . The sum of � Ò over all reactions is less than or equal to the total cross section of the col-

lision, � Û . Not all collisions, therefore, are reacting. If a reaction takes place, internal energy is

exchanged as described in Section 7.3.

1. Select reaction Ë with probability
c - Ö Z Úc Ü .

2. If reaction Ë selected

(a) Perform reaction Ë
(b) It will be necessary to recompute

|
and

| éëê .
3. Else if no reaction selected

(a) Exchange internal energy if necessary.

(b) Perform collision

4. Update particle velocities and species

If no reaction is selected, an elastic or inelastic collision takes place. With probability ò s 3 , a

TR exchange will take place. With probability ò s 3 À , a TRV exchange will take place. If neither

occurs, a elastic collision will be performed. If a reaction is selected, the energy of the reaction¿ Ò is used to compute the post-collision energy ¿ Nó from the pre-collision energy ¿ ó , ¿ Nó 	 ¿ ó �¿ Ò . The particles are then moved to the new species lists, and the post collision velocities are

computed.
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9 Conclusion

The HawkDSMC implementation now contains several collision models, Hard Sphere (HS),

Variable Hard Sphere (VHS), Variable Soft Sphere (VSS), and Larsen-Borgnakke. The motiva-

tion, implementation, and validation of each of these models has been presented. Results show

that the implementation is correct, in comparison with another DSMC implementation.

The tools described in this paper are currently in use by Intel and Tegal Corporations for

design and evaluation of plasma reactors, and by the Institute for Defense Analyses for reentry

calculations. Future work will include implementation and validation of more sophisticated re-

actions, such as dissociation and recombination. Reactions on surfaces will also be addressed,

once adequate models are available. Once these additional features are in place, reliable, accu-

rate, and detailed reactor simulations will be possible. These in turn will facilitate the design of

the next generation of plasma reactors.
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